作者简介

Ilya Ganelin 从机器人专家成功跨界成为一名数据工程师。他曾在密歇根大学花费数年时间研究自发现机器人(self-discovering robot),在波音公司从事手机及无线嵌入式DSP(数据信号处理)软件开发项目,随后加入Capital One 的数据创新实验室,由此进入大数据领域。Ilya是Apache Spark核心组件的活跃贡献者以及Apache Apex的提交者(committer),他希望研究构建下一代分布式计算平台。同时,Ilya还是一个狂热的面包烘焙师、厨师、赛车手和滑雪爱好者。
Ema Orhian 是一位对伸缩性算法充满激情的大数据工程师。她活跃于大数据社区,组织会议,在会上发表演讲,积极投身于开源项目。她是jaws-spark-sql-rest(SparkSQL数据仓库上的一种资源管理器)的主要提交者。Ema一直致力于将大数据分析引入医疗领域,开发一个对大型数据集计算统计指标的端到端的管道。
Kai Sasaki 是一位日本软件工程师,对分布式计算和机器学习很感兴趣。但是一开始他并未从事Hadoop或Spark相关的工作,他最初的兴趣是中间件以及提供这些服务的基础技术,是互联网驱使他转向大数据技术领域。Kai一直是Spark的贡献者,开发了不少MLlib和ML库。如今,他正尝试研究将机器学习和大数据结合起来。他相信Spark在大数据时代的人工智能领域也将扮演重要角色。他的GitHub地址为:https://github.com/Lewuathe。
Brennon York既是一名特技飞行员,也是一位计算机科学家。他的爱好是分布式计算、可扩展架构以及编程语言。自2014年以来,他就是Apache Spark的核心贡献者,目标是通过发展GraphX和核心编译环境,培育一个更强大的Spark社区,激发更多合作。从为Spark提交贡献开始,York就一直在用Spark,而且从那个时候开始,就使用Spark将应用带入生产环境。

内容简介

《Spark:大数据集群计算的生产实践》涵盖了开发及维护生产级Spark应用的各种方法、组件与有用实践。全书分为6章,第1 ~ 2章帮助读者深入理解Spark的内部机制以及它们在生产流程中的含义;第3章和第5章阐述了针对配置参数的法则和权衡方案,用来调优Spark,改善性能,获得高可用性和容错性;第4章专门讨论Spark应用中的安全问题;第6章则全面介绍生产流,以及把一个应用迁移到一个生产工作流中时所需要的各种组件,同时对Spark生态系统进行了梳理。

《Spark:大数据集群计算的生产实践》不会讲述入门级内容,读者在阅读前应已具备Spark基本原理的知识。《Spark:大数据集群计算的生产实践》适合Spark开发人员、Spark应用的项目经理,以及那些考虑将开发的Spark应用程序迁移到生产环境的系统管理员(或者DevOps)阅读。


Ilya Ganelin 从机器人专家成功跨界成为一名数据工程师。他曾在密歇根大学花费数年时间研究自发现机器人(self-discovering robot),在波音公司从事手机及无线嵌入式DSP(数据信号处理)软件开发项目,随后加入Capital One 的数据创新实验室,由此进入大数据领域。Ilya是Apache Spark核心组件的活跃贡献者以及Apache Apex的提交者(committer),他希望研究构建下一代分布式计算平台。同时,Ilya还是一个狂热的面包烘焙师、厨师、赛车手和滑雪爱好者。

Ema Orhian 是一位对伸缩性算法充满激情的大数据工程师。她活跃于大数据社区,组织会议,在会上发表演讲,积极投身于开源项目。她是jaws-spark-sql-rest(SparkSQL数据仓库上的一种资源管理器)的主要提交者。Ema一直致力于...

下载地址

豆瓣评论

  • 硅胶鱼
    spark版本比较老,2017年出版的书,还是1.5; 内容都比较浅,偏向介绍12-30
  • Armstrong
    这是目前看过的对Spark介绍最完整的书,有使用技巧,还有原理分析和调优,非常值得推荐03-11

猜你喜欢

大家都喜欢