内容简介
《深入理解TensorFlow:架构设计与实现原理》以TensorFlow 1.2为基础,从基本概念、内部实现和实践等方面深入剖析了TensorFlow。书中首先介绍了TensorFlow设计目标、基本架构、环境准备和基础概念,接着重点介绍了以数据流图为核心的机器学习编程框架的设计原则与核心实现,紧接着还将TensorFlow与深度学习相结合,从理论基础和程序实现这两个方面系统介绍了CNN、GAN和RNN等经典模型,然后深入剖析了TensorFlow运行时核心、通信原理和数据流图计算的原理与实现,全面介绍了TensorFlow生态系统的发展。
彭靖田,才云科技技术总监,谷歌机器学习开发专家(ML GDE),Kubeflow Core Maintainer,TensorFlow Contributor,曾一度成为TensorFlow社区全球前40的贡献者。加州大学圣迭戈分校访问学者,毕业于浙江大学竺可桢学院求是科学班。曾为华为深度学习团队核心成员,主要参与华为深度学习平台的设计和研发工作。
林健,华为深度学习团队系统工程师。在中科院计算所取得博士学位,并在美国俄亥俄州立大学做过博士后研究。长期从事系统软件研发,工作涉及高性能计算与分布式系统,爱好开源软件与人工智能。曾参与开发CNGrid GOS、MVAPICH等工业级软件,并合作创建LingCloud、DataMPI等开源项目。
白小龙,华为公司深度学习云服务的技术负责人,主要负责深度学习平台、模型和算法的研发。长期从事信号、图像处理和机器...
豆瓣评论