内容简介

《统计学习基础:数据挖掘、推理与预测》介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础:数据挖掘、推理与预测》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。


Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surf...

下载地址

豆瓣评论

  • 豆友1907570
    作者是斯坦福大学三个统计学教授,他们经常参加各种神经网络、数据挖掘、机器学习会议……翻译不好10-10
  • 极度视界
    很多人反应翻译得不好,我还是以前的老观点<中文书籍可以让你快速进入一个领域>。的确里面有些词汇,并不是数学中标准的翻译。提一点:很多方法从统计的角度并不一定是最好的理解方式。继续攻读英文第二版。12-11
  • 可乐音
    中文版翻译得不咋地,不过内容确实深奥,不好懂,可以慢慢看。01-29
  • panjf
    这本书实在是不好读,不过还算是可以学到点东西的01-05
  • 大刀
    本书很牛逼,但是这本翻译很不靠谱11-03

猜你喜欢

大家都喜欢