内容简介
凸优化在应用数学、经济金融、工程、计算机科学,特别是数据科学和机器学习方面越来越重要,《凸优化教程(原书第2版)》对凸优化进行了全面且现代的介绍。
《凸优化教程(原书第2版)》由该领域的权威专家撰写,内容包括凸优化的算法理论的新进展,不但包含一阶、二阶极小化加速技术的一个统一且严格的表述,而且为读者提供了光滑化方法的完整处理,这极大地扩展了梯度类型方法的应用范围。此外,《凸优化教程(原书第2版)》还详细讨论了结构优化的几种有效方法,包括相对尺度优化法和多项式时间内点法。
《凸优化教程(原书第2版)》对理论优化的研究人员以及从事优化问题工作的专业人士非常有用,它提供了许多成功的例子来说明如何开发非常快速的专门极小化算法。基于作者的讲座实践,《凸优化教程(原书第2版)》自然也可以作为工程、经济、计算机科学和数学学科学生的介绍性及高级凸优化课程教材。
尤里·涅斯罗杰夫(Yurii Nesterov)是优化专家。他是Nesterov梯度加速法、多项式时间内点法、平滑技术、正则化牛顿法等方面开创性著作的作者。曾获丹吉格奖(2000)、冯·诺依曼理论奖(2009)、SIAM杰出论文奖(2014)、欧洲金奖(2016)等多项国际大奖。
豆瓣评论