作者简介
唐宇迪,计算机专业博士,网易云课堂人工智能认证行家,51CTO学院讲师,CSDN博客专家。李琳,河南工业大学副教授,在软件工程、机器学习、人工智能和模式识别等领域有深入研究。
侯惠芳,教授,解放军信息工程大学通信与信息系统专业博士,擅长机器学习、大数据检索、人工智能和模式识别等。
王社伟,河南工业大学副教授,西北工业大学航空宇航制造专业博士,挪威科技大学访问学者,对数字化制造、企业管理系统、机器学习、数据挖掘等有丰富的实战经验。
《人工智能数学基础》以零基础讲解为宗旨,面向学习数据科学与人工智能的读者,通俗地讲解每一个知识点,旨在帮助读者快速打下数学基础。
全书分为 4 篇,共 17 章。其中第 1 篇为数学知识基础篇,主要讲述了高等数学基础、微积分、泰勒公式与拉格朗日乘子法;第 2 篇为数学知识核心篇,主要讲述了线性代数基础、特征值与矩阵分解、概率论基础、随机变量与概率估计;第 3 篇为数学知识提高篇,主要讲述了数据科学的几种分布、核函数变换、熵与激活函数;第 4 篇为数学知识应用篇,主要讲述了回归分析、假设检验、相关分析、方差分析、聚类分析、贝叶斯分析等内容。
《人工智能数学基础》适合准备从事数据科学与人工智能相关行业的读者。
豆瓣评论