作品简介
近年来,以Apache Spark为代表的大数据处理框架在学术界和工业界得到了广泛的使用。本书以Apache Spark框架为核心,总结了大数据处理框架的基础知识、核心理论、典型的Spark应用,以及相关的性能和可靠性问题。本书分9章,主要包含四部分内容。第一部分大数据处理框架的基础知识(第1~2章):介绍大数据处理框架的基本概念、系统架构、编程模型、相关的研究工作,并以一个典型的Spark应用为例概述Spark应用的执行流程。第二部分Spark大数据处理框架的核心理论(第3~4章):介绍Spark框架将应用程序转化为逻辑处理流程,进而转化为可并行执行的物理执行计划的一般过程及方法。第三部分典型的Spark应用(第5章):介绍迭代型的Spark机器学习应用和图计算应用。第四部分大数据处理框架性能和可靠性保障机制(第6~9章):介绍Spark框架的Shuffle机制、数据缓存机制、错误容忍机制、内存管理机制等。
许利杰
现任中国科学院软件研究所副研究员、硕士生导师,于中科院软件所获得博士学位。当前主要从事大数据系统方面的研究工作,已在国际权威会议如VLDB、ICDCS、IPDPS、ISSRE、ICAC等发表论文10余篇,主持多项国家自然科学基金,以及华为、京东、联想等企业的合作研发项目。
曾为Apache Spark和Hadoop修复多个内核代码严重错误,编写的SparkInternals技术文档被社区广泛关注,获得四千多颗星。
博士期间曾在微软亚洲研究院、阿里巴巴、腾讯担任客座研究学生。目前还担任中国计算机学会系统软件专委会委员、中国科学院青年创新促进会会员。
方亚芬
现任中国科学院软件研究所工程师,于南开大学获得学士学位、中科院软件所获得硕士学位。
当前主要从事大数据系统、操作系统方面的研发工作,参与多项国家自然科学基金、国家重点研发计划,以及华为、腾讯、中国邮政等企业的合作研发项目。
曾在阿里巴巴等担任客座研究学生,目前是华为openEuler社区树莓派项目负责人。