作品简介
本书采用基于任务的方式来介绍如何在机器学习中使用Python。书中有近200个独立的解决方案,针对的都是数据科学家或机器学习工程师在构建模型时可能遇到的常见任务,涵盖从简单的矩阵和向量运算到特征工程以及神经网络的构建。所有方案都提供了相关代码,读者可以复制并粘贴这些代码,用在自己的程序中。
本书不是机器学习的入门书,适合熟悉机器学习理论和概念的读者阅读。你可以将本书作为案头参考书,在机器学习的日常开发中遇到问题时,随时借鉴书中代码,快速解决问题。
克里斯·阿尔本(Chris Albon)
是一位有十年经验的数据科学家和政治学家,他将统计学习、人工智能和软件工程应用到政治和社会活动以及人道主义活动中,譬如监查选举情况、灾难救助等。目前,Chris是肯尼亚创业公司BRCK的首席数据科学家。这家公司致力于为前沿市场的互联网用户构建一个稳健的网络。
韩慧昌,毕业于北京科技大学,ThoughtWorks高级咨询师,有多个大型企业AI项目经验。林然,有6年多的开发经验、4年多Python开发经验,在航空、零售、物流、汽车、通讯等多个行业应用过机器学习算法。徐江,毕业于瑞典皇家理工学院的系统生物学专业,曾就职于Thoughtworks软件技术有限公司。