作品简介
本书专注讨论深度学习中应用非常广泛的模型——卷积神经网络,该模型特别适用于图像分类和识别、目标分割和检测以及人工智能游戏方面,受众对象包括计算机、自动化、信号处理、机电工程、应用数学等相关专业的研究生、教师以及算法工程师和科研工作者。本书的最大特色是对卷积神经网络进行由浅入深的分类描述,依次包括:现代雏形、突破模型、应变模型、加深模型、跨连模型、区域模型、分割模型、特殊模型、强化模型和顶尖成就。这种分类框架是在模型概述和预备知识的基础上逐步展开的,既方便读者入门学习,又有助于读者深入钻研。
李玉鑑,北京工业大学教授.博士生导师。华中科技大学本科毕业,中国科学院数学研究所硕士毕业,中国科学院半导体研究所博士毕业,北京邮电大学博士后出站。曾在中国科学院生物物理所工作,对意识的本质问题关注过多年,并在《21世纪100个交叉科学难题》上发表《揭开意识的奧秘》一文,提出了解决意识问题的认知相对论纲领,对脑计划和类脑研究具有宏观指导意义。长期围绕人工智能的核心目标,在神经网络、自然语言处理、模式识别和机器学习等领域开展教学、科研工作.发表国内外期刊、会议论文数十篇,是本书的第一作者。